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Numerical calculations of the free-surface flow
under a sluice gate
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The free-surface flow under a sluice gate is considered. The fluid is assumed to be
inviscid and incompressible. The problem is solved numerically by using a boundary
integral equation technique. Accurate numerical solutions are obtained when the
intersection of the upstream free surface with the gate is a stagnation point. It is
shown that the radiation condition is not satisfied far upstream and that there is a
train of waves on the upstream free surface. For large values of the downstream
Froude number F , the amplitude of the waves is so small that the upstream free
surface is essentially flat. However for small values of F , the waves are of large
amplitude. They ultimately approach the Stokes’ limiting configuration with an angle
of 120◦ at their crest as F is decreased.

1. Introduction
The free-surface flow under a sluice gate is a classical problem of fluid mechanics.

A sketch of the flow configuration is shown in figure 1. It is a two-dimensional steady
flow above an horizontal bottom. The flow is bounded above by two free surfaces
AB and CD and a vertical wall BC . Far downstream there is a uniform flow with
a constant velocity U and a constant depth H . As we shall see, the problem can be
characterized by the downstream Froude number

F =
U

(gH)1/2
. (1.1)

Here g is the acceleration due to gravity.
Over the years, many analytical and numerical approximations have been obtained

(see for example Binnie 1952; Benjamin 1956; Fangmeier & Strelkoff 1968; Larock
1969; Chung 1972). It is usually assumed that B is a stagnation point and that there
is a uniform stream far upstream. The last assumption is the radiation condition
which requires no waves far upstream. It is then possible to define an upstream
Froude number

FU =
V

(gD)1/2

where V and D are the constant velocity and depth far upstream. The Froude
numbers F and FU are related by the identity

F2
U =

F2

8

[(
8

F2
+ 1

)1/2

− 1

]3

(1.2)
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Figure 1. Sketch of the flow and of the coordinates.

(see Binnie 1952 for a derivation). The results obtained by using these approximations
suggest that there is a one-parameter family of solutions and that the flow is subcritical
upstream (i.e. FU < 1) and supercritical downstream (i.e. F > 1).

In this paper we compute accurate numerical solutions for the fully nonlinear
problem. The problem is first formulated as an integral equation for the unknown
shapes of the free surfaces. This equation is then discretized and the resulting algebraic
equations are solved by Newton’s method. Such boundary integral methods were used
before by Vanden-Broeck (1980), Forbes & Schwartz (1982), Vanden-Broeck & Dias
(1992), Vanden-Broeck & Tuck (1994), Hocking & Vanden-Broeck (1996) and others.
We also found that there is a one-parameter family of solutions. However our results
show that the solutions do not satisfy the radiation condition: there is a train of
waves on the upstream free surface. The amplitude of the waves comes as part of the
solution. Our numerical findings indicate the non-existence of solutions which satisfy
the radiation condition.

For F > 2.4, the waves are of very small amplitude and the upstream free surface
is essentially flat. However for F < 2.4, the waves are quite noticeable and they
ultimately become large nonlinear waves as F is decreased.

An interesting quantity is the contraction ratio

Cc =
H

yC
. (1.3)

Here yC is the distance from the separation point C to the bottom. We show that our
computed values of Cc are in good agreement with those of Fangmeier & Strelkoff
(1968) for F large. This is consistent since the scheme of Fangmeier & Strelkoff
neglects the waves upstream and our calculations show that the waves are indeed
very small for F large.

The problem is formulated in §2. The numerical procedure is described in §3 and
the results are discussed in §4.

2. Formulation
We consider the flow under a sluice gate. The fluid is assumed to be inviscid and

incompressible and the flow to be irrotational. The flow domain is bounded below
by an horizontal bottom and above by the free surfaces AB and CD and the vertical
wall BC (see figure 1). We introduce Cartesian coordinates with the origin on the
bottom and the y-axis along the vertical wall. Gravity g is acting in the negative
y-direction. Far downstream the flow approaches a uniform stream with constant
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Figure 2. Flow configuration in the complex potential plane f = φ+ iψ.

velocity U and constant depth H . We define dimensionless variables by choosing H
as the unit length and U as the unit velocity.

We introduce the complex potential function

f = φ+ iψ (2.1)

and the complex velocity

w = u− iv. (2.2)

Here u and v are the horizontal and vertical components of the velocity. Following
Benjamin (1956) and others, we assume that B is a stagnation point (i.e. u = v = 0
at B). Without loss of generality, we choose φ = 0 at B and ψ = 0 on the streamline
ABCD. It follows from our choice of dimensionless variables that ψ = −1 on the
bottom. We denote by φc the value of φ at the separation point C . The flow
configuration in the f-plane is sketched in figure 2.

In terms of the dimensionless variables, the dynamic boundary condition on the
free surfaces AB and CD can be written as

u2 + v2 +
2

F2
y = 1 +

2

F2
. (2.3)

Here F is the Froude number defined by (1.1).
The kinematic conditions on the bottom and on the gate BC imply

v = 0 on ψ = −1 (2.4)

and

u = 0 on ψ = 0, 0 < φ < φc. (2.5)

This concludes the formulation of the problem. We seek w as an analytic function
of f in the strip −1 < ψ < 0. This function must approach 1 as φ → ∞ and
satisfy (2.3)–(2.5). As we shall see there is a one-parameter family of solutions. It is
convenient to choose this parameter as φc.

We now reformulate the problem as an integral equation. First we define the
function τ− iθ by

w = eτ−iθ (2.6)

and we map the flow domain onto the lower half of the ζ-plane by the transformation

ζ = α+ iβ = eπf. (2.7)

The flow in the ζ-plane is shown in figure 3.
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Figure 3. Flow configuration in the plane ζ = α+ iβ.

Next we apply the Cauchy integral formula to the function τ − iθ in the complex
ζ-plane. We choose a contour consisting of the real axis and a half-circle of arbitrary
large radius in the lower half-plane. After taking the real part we obtain

τ(α) =
1

π

∫ ∞
−∞

θ(α′)

α′ − αdα′. (2.8)

Here τ(α) and θ(α) denote the values of τ and θ on the axis β = 0. The integral in
(2.8) is a Cauchy principal value. The kinematic conditions (2.4) and (2.5) imply

θ(α) = 0 for α < 0 (2.9)

and

θ(α) = −π/2 for 1 < α < αc (2.10)

where αc = eπφc .
Substituting (2.9) and (2.10) into (2.8), we obtain

τ(α) = −1

2
ln
|αc − α|
|1− α| +

1

π

∫ 1

0

θ(α′)

α′ − αdα′ +
1

π

∫ ∞
αc

θ(α′)

α′ − αdα′. (2.11)

The equation (2.11) provides a relation between τ and θ on the free surfaces. We
obtain another relation between τ and θ on the free surfaces in the following way.
First we substitute (2.6) into (2.3). This yields

e2τ +
2

F2
y = 1 +

2

F2
. (2.12)

Next we evaluate the values of y on the free surfaces by using (2.7) and integrating
the identity

d(x+ iy)

df
= w−1. (2.13)

This gives

y(α) = 1 +
F2

2
+

1

π

∫ α

1

e−τ(αo) sin θ(αo)

αo
dαo for 0 < α < 1 (2.14)

and

y(α) = 1 +
1

π

∫ α

∞

e−τ(αo) sin θ(αo)

αo
dαo for α > αc. (2.15)

Equations (2.11), (2.12), (2.14) and (2.15) define a nonlinear integral equation for
the unknown function θ(α) on the free surfaces 0 < α < 1 and α > αc.
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3. Numerical procedure
We solve the integral equation defined by (2.11), (2.12), (2.14) and (2.15) numerically.

We use equally spaced points in the potential function φ. Thus we introduce the
change of variables

α = eπφ (3.1)

and rewrite (2.11) as

τ′(φ) = −1

2
ln
|αc − eπφ|
|1− eπφ| +

∫ 0

−∞

θ′(φo)e
πφo

eπφo − eπφ
dφo +

∫ ∞
φc

θ′(φo)e
πφo

eπφo − eπφ
dφo. (3.2)

Similarly we rewrite (2.14) and (2.15) as

y′(φ) = 1 +
F2

2
+

∫ φ

0

e−τ
′(φo) sin θ′(φo)dφo, (3.3a)

y′(φ) = 1 +

∫ φ

∞
e−τ

′(φo) sin θ′(φo)dφo. (3.3b)

Here τ′(φ) = τ(eπφ), θ′(φ) = θ(eπφ), etc.
Next we introduce the equally spaced mesh points

φUI = −(I − 1)∆1, I = 1, . . . , N1 (3.4)

and

φDI = φc + (I − 1)∆2, I = 1, . . . , N2 (3.5)

on the upstream and downstream free surfaces. Here ∆1 > 0 and ∆2 > 0 are the mesh
sizes. The corresponding unknowns are

θUI = θ′(φUI ), I = 1, . . . , N1 (3.6)

and

θDI = θ′(φDI ), I = 1, . . . , N2. (3.7)

Since θU1 = 0 and θD1 = −π/2, there are only N1 +N2 − 2 unknowns θUI and θDI .
We evaluate the values τUI+1/2 τ

D
I+1/2 of τ′(φ) at the midpoints

φUI+1/2 =
φUI + φUI+1

2
, I = 1, . . . , N1 − 1 (3.8)

and

φDI+1/2 =
φDI + φDI+1

2
, I = 1, . . . , N2 − 1 (3.9)

by applying the trapezoidal rule to the integrals in (3.2) with summations over the
points φUI and φDI . The symmetry of the quadrature and of the distribution of mesh
points enabled us to evaluate the Cauchy principal values as if they were ordinary
integrals. In the calculations presented here, we follow Hocking & Vanden-Broeck
(1996) and rewrite first the last integral in (3.2) as∫ φD

N2

φc

(θ′(φ0)− θI+1/2)e
πφo

eπφo − eπφ
dφo +

θI+1/2

π
ln
|eπφ

D
N2 − eπφ|
|αc − eπφ| (3.10)

before applying the trapezoidal rule. The values θI+1/2 of θ at the mesh points (3.8)–
(3.9) are evaluated in terms of the unknowns (3.6)–(3.7) by four-point interpolation
formula.
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Next we evaluate yUI = y′(φUI ) and yDI = y′(φDI ) by applying the trapezoidal rule to
(3.3). This yields

yU1 = 1 + 1
2
F2,

yUI = yUI−1 − e
[−τU

I−1/2
]
sin[θUI−1/2]∆1, I = 2, 3, . . . , N1;

yDN2
= 1,

yDI = yDI+1 − e
[−τD

I+1/2
]
sin[θDI+1/2]∆2, I = N2 − 1, N2 − 2, . . . , 1.

We use these values to evaluate y′(φ) at the midpoints (3.6) and (3.7) by interpola-
tion formulas.

We now satisfy (2.12) at the midpoints (3.8) and (3.9). This yields N1 + N2 − 2
nonlinear algebraic equations for the N1 +N2 − 1 unknowns F , θUI , I = 2, . . . , N1 and
θDI , I = 2, . . . , N2.

The last equation is obtained by fixing the length of the plate BC . Using (2.6),
(2.10) and (2.13), we obtain

∂y

∂φ
= −e−τ on 0 < φ < φc (3.11)

We use (3.2) to evaluate τ′(φ) for 0 < φ < φc and integrate (3.11) numerically. This
yields the length L of the plate BC in terms on the unknowns. The last equation is
then

yU1 − yD1 − L = 0. (3.12)

For a given value of φc, this system of N1 + N2 − 1 equations with N1 + N2 − 1
unknowns is solved by Newton’s method.

4. Discussion of the results
We used the numerical scheme described in §3 to compute solutions for various

values of φc.
Most of the calculations were performed with N1 = 320, N2 = 360, ∆1 = 0.02 and

∆2 = 0.01. We also calculated solutions with smaller values of ∆1 and ∆2 and larger
values of N1 and N2 and checked that the results presented here are independent of
these parameters within graphical accuracy. An example of such a check is presented
at the end of this section.

Typical free-surface profiles are shown in figure 4(a–e). There is a train of waves
on the upstream free surface. However, for large values of F (let us say F > 2.4),
the waves are so small that they cannot be seen on the figures and the profiles are
essentially flat far upstream (see figure 4a and 4b). However for F < 2.4, the waves
are clearly noticeable on the profiles (see figure 4c–e). As F decreases, the waves
become large amplitude nonlinear waves with broad troughs and sharp crests (see
figure 4e). We expect that they ultimately reach the Stokes limiting configuration with
a 120◦ angle at their crests as F is further decreased.

The profiles of figure 4 show that the mean elevation of the upstream free surface
increases as F increases. Since the flux UH is normalized to 1, it follows that the mean
velocity far upstream decreases as F increases (this is also consistent with (1.2) which
is a valid approximation when the waves are of small amplitude). Therefore the phase
velocity of the waves decreases as F increases. This explains why the wavelength of
the waves increases as we move from figure 4(c) to figure 4(e).
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Figure 4. Computed profile of the free surfaces and of the gate. The arrow indicates the position
of the point at which the downstream free surface separates from the gate. (a) φC = 0.71 and
F = 3.25; (b) φC = 0.41 and F = 2.41; (c) φC = 0.26 and F = 2.03; (d) φC = 0.19 and F = 1.83; (e)
φC = 0.075 and F = 1.51.

In figure 5, we show values of the contraction ratio Cc (defined in (1.3)) versus
yC/yB . Here yC and yB are the ordinates of the points C and B (see figure 1). As
yC/yB approaches zero, yB →∞ and F →∞. The problem reduces then to a classical
free-streamline flow (Batchelor 1967, p. 495) and

Cc =
π

π + 2
. (4.1)

The symbols in figure 5 are numerical values taken from the figure 13 in Fangmeier
& Strelkoff (1968). These numerical values are in good agreement with ours for small
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Figure 5. Values of the contraction coefficient Cc versus yC/yB . The symbols correspond
to the calculations of Fangmeier & Strelkoff (1968).
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Figure 6. Computed profiles of the upstream free surface with N1 = 320, N2 = 360, ∆1 = 0.04 and
∆2 = 0.01 (solid curve) and N1 = 320, N2 = 360, ∆1 = 0.02 and ∆2 = 0.01 (broken line).

values of yC/yB (i.e. for large values of F). This is consistent since Fangmeier &
Strelkoff assumed that there are no waves upstream and our results show that the
waves are of very small amplitude for F large.

In figure 6, we present an example of the checks we used to test the accuracy of the
numerical results. Both curves are computed upstream free surfaces for φC = 0.19.
Figure 6 shows that the results are independent of φUN1

.
The results presented in this section show that there is a train of waves on

the upstream free surface. The amplitude of these waves is different from zero
(except in the limit F → ∞). This indicates the non-existence of solutions satisfying
the radiation condition (which requires no waves far upstream). In particular the
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numerical procedure of §3 diverges if we try to impose the radiation condition for
example by forcing the free surface to be flat far upstream.

Finally let us mention that a well-posed mathematical problem is obtained by
replacing the upstream free surface by a rigid lid. Accurate numerical solutions for
this configuration were recently obtained by Asavanant & Vanden-Broeck (1996).
Their predicted values of Cc are in good agreement with our values in figure 5 for
yC/yB smaller than 0.3.

5. Conclusions
We have performed accurate numerical calculations for the free-surface flow under

a sluice gate. We have shown that the usual assumption of a uniform stream upstream
is incorrect and that there is a train of waves upstream. The amplitude of the waves
is different from zero and no solutions satisfying the radiation condition were found.
In the calculations presented here, we assumed that B is a stagnation point. We
could have assumed instead that the upstream free surface is tangent to the gate at
the separation point (the existence of such flow was demonstrated numerically by
Asavanant & Vanden-Broeck 1996 for an inclined gate). An interesting question is
whether or not there are waves under this assumption and work is progressing on
this problem.

This work was supported in part by the National Science Foundation.
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